

Product User Manual (PUM) for the HY-2 winds

- HY-2B 25 km wind vectors (OSI-114-a)
- HY-2B 50 km wind vectors (OSI-114-b)
- HY-2C 25 km wind vectors (OSI-115-a)
- HY-2C 50 km wind vectors (OSI-115-b)

Version: 1.0 Date: 25/05/2021

OSI SAF Winds Team

Royal Netherlands Meteorological Institute Ministry of Infrastructure and Water Management

Document Change record

Document version	Software version	Date	Author	Change description
0.9		Mar 2021	AV	First version for HY-2B and HY-2C ORR
1.0		May 2021	AV	Changes according to ORR RIDs

Table of contents

1. Introduction	4
1.1. Overview	4
1.2. Acknowledgement	5
1.3. Disclaimer	5
1.4. Useful links	5
1.5. Helpdesk and data availability	5
1.6. Limitations and remaining issues	5
1.7. History of product changes	6
1.8. Reference and applicable documents	6
2. The HSCAT scatterometer	8
3. Processing scheme	10
3.1. Backscatter data averaging	10
3.2. Backscatter calibration	10
3.3. NWP collocation	.11
3.4. Quality control and monitoring	.11
4. Data description	12
4.1. Wind product characteristics	12
4.1.1. Physical definition	12
4.1.2. Units and range	12
4.1.3. Input satellite data	12
4.1.4. Geographical definition	12

4.1.5. Output product	
4.1.6. Expected accuracy	12
4.2. File formats	13
4.2.1. File name conventions	13
4.2.2. File contents	13
5. Data quality	16
6. Abbreviations and acronyms	18
7. Appendix A: BUFR data descriptors	20
8. Appendix B: NetCDF data format	
••	

1. Introduction

1.1. Overview

The HSCAT scatterometer instrument is mounted on the HY-2B satellite which was launched on October 25th, 2018 by the Chinese National Satellite Ocean Application Service (NSOAS). The same instrument is mounted on the HY-2C satellite which was launched on September 21th, 2020. The Ku-band HSCAT instruments on both satellites are identical and are similar to HSCAT on HY-2A which was launched in 2011. The level 1b files from NSOAS are processed by KNMI into 25 km and 50 km level 2 wind products.

The EUMETSAT Ocean and Sea Ice Satellite Application Facility (OSI SAF) produces a range of airsea interface products, namely: wind, sea ice characteristics, Sea Surface Temperatures (SST) and radiative fluxes, Surface Solar Irradiance (SSI) and Downward Long wave Irradiance (DLI). The Product Requirements Document [1] provides an overview of the committed products and their characteristics in the current OSI SAF project phase, the Service Specification Document [2] provides specifications and detailed information on the services committed towards the users by the OSI SAF in a given stage of the project.

KNMI is involved in the OSI SAF as the centre where the level 1 to level 2 scatterometer wind processing is carried out. This document is the Product User Manual to the HY-2/HSCAT wind products. More general information on the OSI SAF project is available on the OSI SAF website: http://osi-saf.eumetsat.int. The user is strongly encouraged to register on this website in order to receive the service messages and the latest information about the OSI SAF products. More information about this product can also be found on https://scatterometer.knmi.nl/.

The scatterometer is an instrument that provides information on the wind field near the ocean surface, and scatterometry is the knowledge of extracting this information from the instrument's output. Spacebased scatterometry has become of great benefit to meteorology and climate in the past years. This is extensively described in the Algorithm Theoretical Baseline Document, see [3].

KNMI has a long experience in scatterometer processing and is developing generic software for this purpose. Processing systems have been developed for the ERS, NSCAT, SeaWinds, ASCAT, OSCAT, RapidScat, and HSCAT scatterometers. Scatterometer processing software is distributed through the EUMETSAT Numerical Weather Prediction Satellite Application Facility (NWP SAF), whereas wind processing is performed operationally in the Ocean and Sea Ice SAF (OSI SAF).

The OSI SAF products are delivered on request through the KNMI FTP server and through EUMETCast. See also <u>https://scatterometer.knmi.nl/</u> for real-time graphical examples of the products and up-to-date information and documentation.

This user manual outlines user information for the OSI SAF HY-2B winds on 25 km (OSI-114-a) and 50 km (OSI-114-b) grid spacing, and on the HY-2C winds on 25 km (OSI-115-a) and 50 km (OSI-115-b) grid spacing. Section 2 presents a brief description of the HSCAT instrument, and section 3 gives an overview of the data processing configuration. Detailed information on the file content and format is given in section 4. The product quality is elaborated in section 5 and in the validation report to these products [5].

1.2. Acknowledgement

NSOAS kindly provides the near-real time HSCAT level 1b data which are used as input for the OSI SAF wind products.

1.3. Disclaimer

All intellectual property rights of the OSI SAF products belong to EUMETSAT. The use of these products is granted to every interested user, free of charge. If you wish to use these products, EUMETSAT's copyright credit must be shown by displaying the words "copyright (year) EUMETSAT" on each of the products used.

The OSI SAF is much interested in receiving your feedback, would appreciate your acknowledgment in using and publishing about the data, and we like to receive a copy of any publication about the application of the data. Your feedback, e.g., directed to <u>scat@knmi.nl</u>, helps us in maintaining the resources for the OSI SAF wind services.

1.4. Useful links

KNMI scatterometer website: <u>https://scatterometer.knmi.nl/</u>

Information on OSI SAF activities at KNMI: <u>https://scatterometer.knmi.nl/osisaf/</u>

OSI SAF wind product documentation on http://osi-saf.eumetsat.int

NWP SAF website: <u>http://nwp-saf.eumetsat.int</u>

HSCAT visual products:

https://scatterometer.knmi.nl/hy2b_25_prod/ (HY-2B 25 km)

https://scatterometer.knmi.nl/hy2b_50_prod/ (HY-2B 50 km)

https://scatterometer.knmi.nl/hy2c_25_prod/ (HY-2C 25 km)

https://scatterometer.knmi.nl/hy2c_50_prod/ (HY-2C 50 km)

EUMETSAT Data Centre: <u>https://www.eumetsat.int/eumetsat-data-centre</u>

HY-2B and HY-2C information on NSOAS website: http://www.nsoas.org.cn/eng/

HY-2A information on the ESA website: https://earth.esa.int/web/eoportal/satellite-missions/h/hy-2a.

1.5. Helpdesk and data availability

For a swift response management procedure, user requests on the OSI SAF data products should be issued at the Ocean and Sea Ice SAF website.

The products can be distinguished w.r.t. product swath grid spacing by their file names, see section 4.2.

A BUFR reader is available at <u>https://scatterometer.knmi.nl/bufr_reader/</u>.

1.6. Limitations and remaining issues

1) Since not all satellite data are acquired through ground stations in the polar regions, the timeliness of the products is not always optimal, the products are available between ~2 hours and ~16 hours after sensing time.

2) Following agreements between NSOAS and EUMETSAT the data distribution is currently limited to the members of the HY-2B validation project and EUMETSAT member state National Meteorological Services.

1.7. History of product changes

Here is an historical overview of the changes in the HY-2B wind products:

28-Jan-2019 Initial version of HY-2B winds made available to the users. PenWP version is 2_2_02.

09-Apr-2019 Use improved Geophysical Model Function NSCAT4DS and apply Sea Surface Temperature corrections to backscatter to reduce systematic wind speed and direction biases.

11-Feb-2021 Reduced the gap between successive orbit files for better coverage near the south pole. The MLE values in the products now represent the MLE of the MSS-selected wind solution rather than the MLE of the closest local minimum solution. This leads to somewhat higher reported MLE values but does not change the wind characteristics. PenWP version is 2_2_04.

Here is an historical overview of the changes in the HY-2C wind products:

12-Nov-2020 Initial version of HY-2C winds made available for visualisation. PenWP version is 2_2_02.

11-Feb-2021 Reduced the gap between successive orbit files for better coverage near the south pole. PenWP version is 2_2_04.

1.8. Reference and applicable documents

- [1] OSI SAF, *Product Requirements Document,* SAF/OSI/CDOP3/MF/MGT/PL/2-001, 2021
- [2] OSI SAF, Service Specification Document, SAF/OSI/CDOP3/MF/MGT/PL/003, 2021
- [3] OSI SAF, Algorithm Theoretical Basis Document for the scatterometer wind products, SAF/OSI/CDOP2/KNMI/SCI/MA/197, 2021 (*)
- [4] Verhoef, A. and A. Stoffelen, *Quality Control of Ku-band scatterometer winds,* OSI SAF report SAF/OSI/CDOP2/KNMI/TEC/RP/194, 2012 (*)
- [5] Verhoef, A., J. Vogelzang and A. Stoffelen, HY-2 wind validation report, OSI SAF report, SAF/OSI/CDOP3/KNMI/TEC/RP/393, 2021 (*)
- [6] National Satellite Ocean Application Service, HY-2A Microwave Scatterometer Data Format User's Guide Version 2012-5-30

- [7] National Satellite Ocean Application Service (NSOAS), HY-2B Scatterometer Wind Product User Manual, Version 1.1, December 2018
- [8] de Kloe, J., A. Stoffelen and A. Verhoef, *Improved Use of Scatterometer Measurements by Using Stress-Equivalent Reference Winds*, IEEE Journal of Selected Topics in Applied Earth O, 2017, 10, 5, 2340-2347, doi:10.1109/JSTARS.2017.2685242.
- Leidner, M., R. Hoffman, and J. Augenbaum, SeaWinds scatterometer real-time BUFR geophysical data product, version 2.2.0, NOAA/NESDIS, February 2000, available on ftp://www.scp.byu.edu/data/qscat/docs/bufr.pdf
- [10] Thesis *Scatterometry* by Ad Stoffelen, 1998 (*)
- [11] Thesis Wind Field Retrieval from Satellite radar systems by Marcos Portabella, 2002 (*)

Documents marked with a (*) are available on https://scatterometer.knmi.nl/publications/.

2. The HSCAT scatterometer

HY-2B and HY-2C carry the same Ku-band HSCAT scatterometers which are similar to the one flown on-board HY-2A. The HY-2B spacecraft was launched on October 25th, 2018 and it is in a sunsynchronous orbit of 980 km altitude with an inclination of 99.3°. The local time of Equator crossing is about 6:00. HY-2C was launched on September 21st, 2020 and it is in a non-sun-synchronous orbit with 66.0° inclination. Its equator crossing time is shifting each day. As such, HY-2C can generate a large number of closely collocated winds with other scatterometers. The HY-2C measurement swath reaches a maximum latitude of about 74° N and 74° S. For detailed information on the HSCAT instrument and data we refer to [6] and [7]. A brief description is given below.

The HSCAT instrument is a conically scanning pencil-beam scatterometer, as depicted in Figure 1. It uses a 1-meter dish antenna rotating at 20 rpm with two "spot" beams of about 25 km × 35 km size on the ground, a horizontal polarisation beam (HH) and a vertical polarisation beam (VV) at incidence angles of 42° and 49° respectively. Contrary to QuikSCAT and OSCAT, the HSCAT level 1b data do not provide high resolution 'slice' data but only full footprint 'egg' data. The beams sweep the surface in a circular pattern as depicted in Figure 1. Due to the conical scanning, a Wind Vector Cell (WVC) is generally viewed when looking forward (fore) and a second time when looking aft. As such, up to four measurement classes (called "beam" here) emerge: HH fore, HH aft, VV fore, and VV aft, in each WVC. The ~1800-km-wide swath covers 90% of the ocean surface in 24 hours which is substantially higher than side-looking scatterometers like ERS, NSCAT and ASCAT.

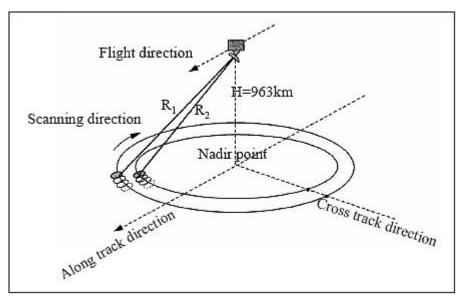


Figure 1: HSCAT pencil beam geometry (source: ESA website).

The wind retrieval from HSCAT data is not trivial. In contrast with side-looking scatterometers like ASCAT, the number of measurements and the beam azimuth angles vary with the sub-satellite cross-track location. The wind retrieval skill will therefore depend on the position in the swath. A detailed discussion is provided in [3]. Here we only summarise some issues specific to HSCAT.

In the outer swath (where only VV beam data are available), the individual backscatter measurements ('eggs') contributing to the VV fore or aft beam in a specific WVC are re-distributed to form four independent backscatter observations. Eggs are accumulated and averaged based on their azimuth angles. The outer swath winds have slightly reduced quality control skill, but they are still very well usable, depending on the application. These winds are flagged in the product and can be filtered out easily if requested, see section 4.2.

The HSCAT scatterometer operates at a Ku-band radar frequency (13.3 GHz corresponding to ~2 cm wavelength). The atmosphere is not transparent at these wavelengths and in particular rain is detrimental for wind computation. In fact, moderate and heavy rain cause bogus wind retrievals of 15-20 m/s wind speed which need to be eliminated by a Quality Control (QC) step. Wind-rain discrimination is easiest to manage in the sweet swath, but still performs acceptably in nadir and outer swath.

The processing algorithms for the HSCAT wind processing are heavily based on the algorithms as developed for SeaWinds, RapidScat, and OSCAT [3]. When calibrated geophysical backscatter measurements are available, the wind processing of the different Ku-band pencil-beam scatterometers is very similar. The wind processing software which is used, the Pencil beam Wind Processor (PenWP), is the successor of the SeaWinds Data Processor (SDP) and the OSCAT Wind Data Processor (OWDP). PenWP is capable to process data from SeaWinds, OSCAT, RapidScat and HSCAT scatterometers and replaces all former pencil beam Ku-band wind processing software packages in the NWP SAF.

Differences between the various rotating pencil beam scatterometers are to a great extent on a technical (data formats and handling) level. Moreover, due to different orbits and antenna geometries, incidence angles differ. PenWP utilises the NSCAT-4DS Geophysical Model Function (GMF) [3], which is available for all prevailing incidence angles. In order to handle instrument differences well, particularly noise characteristics, some parts of the processing were re-tuned for HY-2B and HY-2C, mainly the normalisation of the Maximum Likelihood Estimator (MLE) and the tuning of the Quality Control [4].

3. Processing scheme

KNMI has processing chains running in near-real time with HY-2B and HY-2C data, including wind maps displayed on the OSI SAF website. The processing software is developed in the OSI SAF and runs in the KNMI operational environment. The processing includes monitoring and archiving functionalities. General information about the scatterometer wind processing algorithms can be found in the Algorithm Theoretical Basis Document (ATBD) [3]. The products are distributed through several means (e.g., FTP, EUMETCast, see section 1.5) and the software packages are available on the NWP SAF software portal.

3.1. Backscatter data averaging

The level 1b backscatter data from NSOAS are organised in radar footprint 'eggs' [6]. The eggs are beam-wise accumulated to a WVC level before wind inversion is done. The egg weights are proportional to the estimated transmitted power contained in an observation, i.e., inversely proportional to the K_p value (measurement noise estimate). Poor quality backscatter data are characterised by very low σ^0 values (-299 dB or -99 dB) and such data are skipped. Also, the change in time of the antenna azimuth angle is monitored. If the antenna azimuth angle does not (significantly) change in subsequent measurements, this can be due to a problem in the rotation mechanism and such data are rejected for further processing.

3.2. Backscatter calibration

No absolute instrumental instrument calibration exists for Ku-band pencil-beam scatterometers. Ku-band pencil-beam backscatter distributions should however be matched to achieve wind intercalibration of all space-borne scatterometer instruments. We thus developed methods that calibrate the winds of each scatterometer effectively to the mean winds at collocated moored buoys. No significant signs of azimuth (or WVC) dependent instrument biases have been found for HY-2B or HY-2C. Also the beam incidence angles are constant and hence we have chosen to apply backscatter corrections that are only dependent on the beam polarisation. The goal of applying backscatter corrections is to minimise wind speed biases between scatterometer winds on the one hand and buoy and NWP winds on the other hand. With this in mind, the calibration correction for VV has been obtained by looking at the outer swath data (where no HH data are available) and choosing a calibration amount that yields minimum wind speed biases. Subsequently, the swath part containing both HH and VV was considered. It appears that in this region the wind direction biases are slightly dependent on the ratio between the VV and HH corrections, i.e., changing the VV and HH corrections in opposite directions will change the wind direction biases without affecting the wind speed biases significantly. In this way, within a few iterations the two calibration coefficients can be obtained which yield minimal wind direction and wind speed biases.

Product	НН	VV inner swath	VV outer swath
HY-2B 25 km	0.70 dB	-0.68 dB	-0.54 dB
HY-2B 50 km	0.62 dB	-0.63 dB	-0.56 dB
HY-2C 25 km	-1.12 dB	-1.32 dB	-1.28 dB

Product	HH	VV inner swath	VV outer swath
HY-2C 50 km	-1.17 dB	-1.32 dB	-1.30 dB

The table shows the calibration coefficients per product and per beam category. Note that the calibrated backscatter values are only available within the wind processing software; the σ^0 data in the BUFR wind product are uncorrected values.

3.3. NWP collocation

KNMI receives NWP model data from ECMWF twice a day through the Regional Meteorological Data Communication Network (RMDCN).

NWP model sea surface temperature (SST) data are used to support the Bayesian sea ice discrimination [3]. The SST values of the four surrounding model grid points around the WVC location are bi-linearly interpolated. Note that the ECMWF model data do not contain SST values over land; if one or more of the four surrounding grid points has missing SST data, the SST value of the grid point closest to the WVC is taken. WVCs with a sea surface temperature above 5 °C are assumed to be always open water. The Bayesian ice screening procedure may sometimes assign rainy WVCs erroneous as ice; using the extra SST criterion, WVCs in areas warmer than 5 °C will never be labelled as ice. Due to its rather 'warm' threshold value, the NWP-based SST ice screening will only be active in regions far away from the ice extents.

Land presence within each WVC is determined by using the land-sea mask available from the model data. The weighted mean value of the land fractions of all model grid points within 50 km (60 km in the 50 km products) of the WVC centre is calculated. The weight of each grid point scales with $1/r^2$, where *r* is the distance between the WVC centre and the model grid point. If this mean land fraction value exceeds a threshold of 0.02, no wind retrieval is performed.

NWP forecast wind data are necessary in the ambiguity removal step of the processing. Wind forecasts are available twice a day (00 and 12 GMT analysis time) with forecast time steps of +3h, +4h, +5h, ..., +30h. The model wind data are quadratically interpolated with respect to time and bi-linearly interpolated with respect to location and put into the level 2 information part of each WVC (see section 4.2). The ECMWF winds stored in the wind products are stress-equivalent winds [8] which have been computed from the equivalent neutral model winds.

3.4. Quality control and monitoring

In each WVC, the σ^0 data is checked for quality and completeness and the inversion residual [3], called MLE, is checked. Degraded WVCs are flagged; see section 4.2 for more details.

An information file is made for each product. The content of the file is identical whatever the product and results from a compilation of all the global information concerning this product. From these files, various graphs are produced to visually display the confidence levels of the products and their evolution with time. Any deviations from nominal behaviour will be immediately visible as steps in these graphs. Data and overall product quality is also available to the users within the products; see section 4 for a description of quality flags.

4. Data description

4.1. Wind product characteristics

4.1.1. Physical definition

Horizontal stress-equivalent wind vector at 10 m height, obtained using the NSCAT-4DS GMF, see [3] [8].

4.1.2. Units and range

Wind speed is measured in m/s. The wind speed range is from 0-50 m/s, but wind speeds exceeding 25 m/s are generally less reliable [3]. In the BUFR products, the wind direction is in *meteorological* (World Meteorological Organisation, WMO) convention relative to North: 0 degrees corresponds to a wind flowing to the *South* with a clockwise increment. In the NetCDF products, the wind direction is in *oceanographic* convention: 0 degrees corresponds to a wind flowing to the *North* with a clockwise increment.

4.1.3. Input satellite data

The HY-2B and HY-2C level 1b input data [7] are kindly provided by NSOAS. The products contain geo-located backscatter measurements in time order. In the wind processing the measurements are assigned to a satellite swath WVC grid of 25 km size or 50 km.

4.1.4. Geographical definition

The HY-2B satellite flies in a near-polar sun-synchronous orbit at 99 degrees inclination and the HY-2C satellite files in a non-sun-synchronous orbit at 66 degrees inclination. Both spacecrafts are at approximately 960 km orbit height and have a swath width of 1800 km; the swath is composed of 76 25 km size WVCs or 38 50 km size WVCs. Products are organised in files containing one whole orbit; from the South Pole to the South Pole. Due to the independence of the earth swath definition and the measurement swath, not all WVCs are filled with data for HSCAT. For 25 km products, there are no winds or almost no winds in the outer WVCs (1-2, 74-76). For 50 km products, there are no winds or very little winds in WVCs 1 and 38. The wind retrieval is only done in cases where both fore and aft views are present.

4.1.5. Output product

The input product in HDF format is processed into a BUFR output product including a unique wind solution (chosen), its corresponding ambiguous wind solutions and quality information (distance to cone, quality flag). The products are also available in NetCDF format; see section 8 for more details.

4.1.6. Expected accuracy

The expected accuracy is defined as the expected bias and standard deviation of the primary calculations. The accuracy is validated against in situ wind measurements from buoys, and against NWP data. Even better, the errors of all NWP model winds, in situ data, and scatterometer winds are computed in a triple collocation exercise [10]. The performance is pretty constant over the globe and depends mainly on the sub footprint wind variability. According to the OSI SAF product requirements [2] the accuracy should be better than 2 m/s in wind component standard deviation with a bias of less than 0.5 m/s in wind speed. More validation information is available in [5], showing that the actual product accuracy well exceeds the requirements.

4.2. File formats

Wind products are in BUFR Edition 4 or in NetCDF format. A complete description of BUFR can be found in WMO publication No 306, Manual on Codes.

The OSI SAF wind product is stored in exactly the same BUFR format as described in the SeaWinds BUFR manual from NOAA [9], a list of descriptors (fields) contained in each WVC is provided in section 7. Data are organised in files containing approximately one orbit (100 minutes) of data.

4.2.1. File name conventions

The file name convention for the level 2 BUFR product on the KNMI FTP server is

hscat_YYYYMMDD_HHMMSS_hy_2b__ORBIT_T_SMPL_CONT_l2.bufr or

hscat_YYYYMMDD_HHMMSS_hy_2c__ORBIT_T_SMPL_CONT_l2.bufr

- YYYYMMDD denotes the acquisition date (year, month and day) of the first data in the file
- HHMMSS denotes the acquisition time (hour, minute and second) of the first data in the file
- ORBIT is the orbit number of the first data in the file (00000-99999)
- T is the processing type (o for operational, t for test)
- SMPL is the WVC sampling (cell spacing): 250 for the 25 km and 500 for the 50 km product
- CONT refers to the product contents: always ovw for a product containing Ocean Vector Winds

Examples of file names are

hscat_20210309_230106_hy_2b__11885_o_250_ovw_l2.bufr for a 25 km HY-2B product hscat_20210310_033812 hy 2c__02299 o 500 ovw_l2.bufr for a 50 km HY-2C product

The file names on EUMETCast are different from those on the FTP server and according to the WMO conventions

W_NL-KNMI-DeBilt,SURFACE+SATELLITE,HY-2B+HSCAT_C_EHDB_YYYYMMDDHHMMSS_ORBIT _T_SMPL_CONT_I2.bin or

W_NL-KNMI-DeBilt,SURFACE+SATELLITE,HY-2C+HSCAT_C_EHDB_YYYYMMDDHHMMSS_ORBIT _T_SMPL_CONT_I2.bin

The meaning of the acronyms in the file names is the same as for the files on FTP. Example file names are

W_NL-KNMI-DeBilt,SURFACE+SATELLITE,HY-2B+HSCAT_C_EHDB_20210309230106_11885 _o_250_ovw_l2.bin

W_NL-KNMI-DeBilt,SURFACE+SATELLITE,HY-2C+HSCAT_C_EHDB_20210310033812_02299 _o_500_ovw_l2.bin

4.2.2. File contents

In each node or wind vector cell (WVC) 118 data descriptors are defined. In addition some extra information/alterations have been put in place:

• In the BUFR header the value for "generating centre" is set to 99, representing KNMI.

- The products contain up to four ambiguous wind solutions, with an index to the selected wind solution. After the wind inversion step, we initially store the up to four solutions corresponding to the inversion residual (Maximum Likelihood Estimator, MLE) relative minima. However, subsequently the wind speed and wind direction of the after 2DVAR-selected Multiple Solution Scheme (MSS) wind solution is put at the index of the selected wind solution. This index is set to the initial wind vector solution which is closest to the MSS wind vector selection obtained after 2DVAR. Thus, the former wind vector is not provided in the product, but rather the MSS selected wind vector. The 'Formal Uncertainty in Wind Direction' does not contain the uncertainty, but the normalised inversion residual (referred to as Rn in [11]).
- The 'SeaWinds Probability of Rain' and 'SeaWinds NOF Rain Index' BUFR fields are not used and contain missing data values.
- The Wind Vector Cell Quality Flag (table 021109) is redefined with respect to the WMO conventions and now has the following definitions:

Description	BUFR bit	Fortran bit	Integer value
Not used	1	16	
Not enough good sigma-0 available for wind retrieval	2	15	32768
Not used	3	14	16384
VV polarised data in more than two beams	4	13	8192
Product monitoring not used	5	12	4096
Product monitoring flag	6	11	2048
KNMI Quality Control (including rain) data rejection	7	10	1024
Variational QC data rejection	8	9	512
Land presence	9	8	256
Ice presence	10	7	128
Not used	11	6	
Reported wind speed is greater than 30 m/s	12	5	32
Reported wind speed is less than or equal to 3 m/s	13	4	16
Not used	14	3	
Rain flag algorithm detects rain	15	2	4
Data from at least one of the four possible beam/view combinations are not available	16	1	2
Missing value	All 17 set	All 17 set	

In Fortran, if the Wind Vector Cell Quality Flag is stored in an integer I then use **BTEST(I,NDW-NB)** to test BUFR bit **NB**, where **NDW**=17 is the width in bits of the data element in BUFR. The **BTEST** function is equivalent to **(I/2^NF) modulo 2** where **NF** is the Fortran bit number. The last column in the table shows the integer value if only the given bit is set.

The flag indicating that more than two beams contain VV polarised data, Fortran bit 13, is active in the outer part of the swath (generally WVCs 1-9 and 68-76 at 25 km, WVCs 1-4 and 35-38 at 50 km). It indicates that outer beam data is used to obtain four independent σ^0 values, contrary to the middle part of the swath where two beams contain VV (outer beam) data and two beams contain HH (inner beam) data. In the outer parts of the swath, the VV backscatter data present in the level 1b product are distributed to two WVC beams based on their azimuth angle such that maximum azimuth dispersion is obtained. This generally results in slightly less optimal wind retrieval; users assimilating the data into NWP models may consider to reject WVCs for which this flag is set.

If the 'product monitoring not used' bit, Fortran bit 12, is set to zero, the product is monitored. If the product is monitored and the 'product monitoring flag' bit, Fortran bit 11, is set to zero, the product is valid; otherwise it is rejected by the product monitoring [3]. This is based on a statistical check of the number of WVC QC rejections, the wind speed bias with respect to the NWP background, and the wind vector RMS difference with respect to the NWP background. The product monitoring bits have the same value for all WVCs in one BUFR output file.

If the KNMI QC flag, Fortran bit 10, is set in a WVC, then the backscatter information is not useable for various geophysical reasons like rain, confused sea-state etc, resulting in a too large inversion residual. WVCs in which the KNMI QC flag is set, are not used in the calculation of the analysis field in the ambiguity removal step. However, after the ambiguity removal the wind solution closest to the analysis field is chosen (if wind solutions are present in the WVC). This means that such a WVC may contain a selected wind solution, but it is suspect.

The land presence flag, Fortran bit 8, is set if a land fraction (see section 3.3) larger than zero is calculated for the WVC. As long as the land fraction is below the limit value, a reliable wind solution may however still be present so there is normally no reason to reject WVCs with the land flag set.

The Bayesian ice screening algorithm as implemented in PenWP is used in the processing. The ice presence flag, Fortran bit 7, is set if the Bayesian sea ice screening algorithm calculates ice for the WVC [3]. Note that the products contain wind solutions also over sea ice regions. These bogus winds are flagged both by the KNMI quality control flag and by the ice flag. Hence it is important to reject any winds with the KNMI quality control flag set when ingesting the products. Note that WVCs that are rejected due to a large inversion residual (e.g., in case of excessive local wind variability), only have the KNMI quality control flag set. On the other hand, WVCs that are rejected due to sea ice, have both the KNMI quality control flag set.

If the variational QC flag, Fortran bit 9, is set, the wind vector in the WVC is rejected during ambiguity removal due to spatial inconsistency. A wind solution is present, but it may be suspect.

It is recommended not to automatically use WVCs with the product monitoring flag, the KNMI quality control flag or the variational quality control flag set. See [3] for more information on product reliability. However, in nowcasting applications, the flagged data may be visually inspected in their meteorological context and hence be rather useful for trained meteorologists.

5. Data quality

As stated in the OSI SAF product requirements [2], the accuracy should be better than 2 m/s in wind component standard deviation with a bias of less than 0.5 m/s in wind speed.

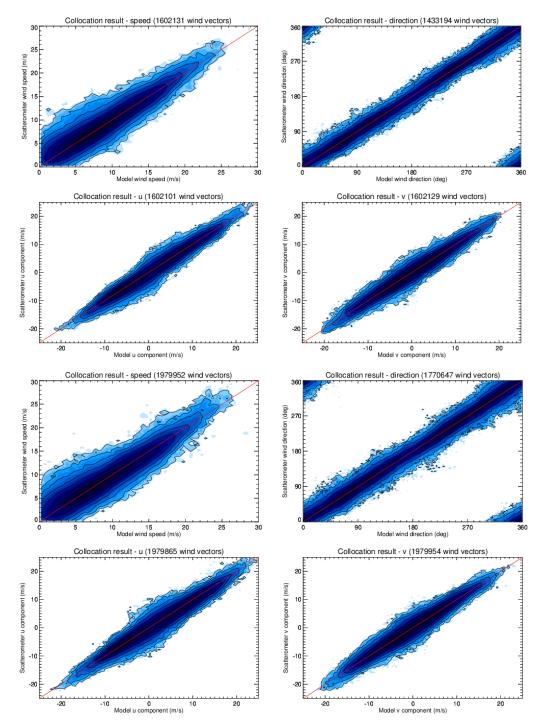


Figure 2: Two-dimensional scatter density plots of wind speed, direction (w.r.t. wind coming from the North), u and v components of 25 km HY-2B (top) and HY-2C (bottom) wind product versus the ECMWF model stress-equivalent forecast winds from 21-22 February 2021.

Figure 2 shows two-dimensional scatter density plots of the retrieved winds versus ECMWF 10 m stress-equivalent background winds for the 25 km HY-2B and HY-2C wind products, after rejection of Quality Controlled (KNMI QC flagged) wind vectors. The top left plot in each panel corresponds to wind speed (bins of 0.5 m/s) and the top right plot to wind direction (bins of 2.5°). The latter are computed for only ECMWF winds larger than 4 m/s. The bottom plots show the *u* and *v* wind component statistics (bins of 0.5 m/s). The contour lines are in logarithmic scale.

From these results, it is clear that the spread in the distributions is small. The wind speed bias is 0.11 m/s for HY-2B and 0.00 m/s for HY-2C, close to zero. The 50 km products have comparable biases. The wind component standard deviations of the differences are around 1.1 to 1.3 m/s for the 25 km products and around 1.0 to 1.1 m/s for the 50 km products.

The overall product error standard deviations in the zonal (u) and meridional (v) wind components at the product resolution is evaluated by triple collocation and given in the following table [5]:

	Scatterometer		Buoys		ECMWF	
	ε _u (m/s)	ε _ν (m/s)	ε _u (m/s)	ε _v (m/s)	ε _u (m/s)	ε _ν (m/s)
25 km HY-2B	0.52	0.48	1.20	1.27	0.92	0.87
25 km HY-2C	0.64	0.63	1.23	1.29	0.93	0.85
50 km HY-2B	0.41	0.35	1.33	1.39	0.84	0.78
50 km HY-2C	0.49	0.48	1.32	1.41	0.86	0.80

The 25 km products are less accurate, but provide a better representation of the buoy winds than the 50 km products. On the other hand, the latter product is more representative of global NWP models. Much more validation information can be found in [5].

6. Abbreviations and acronyms

2DVAR	Two-dimensional Variational Ambiguity Removal
ATBD	Algorithm Theoretical Basis Document
AR	Ambiguity Removal
ASCAT	Advanced Scatterometer
BUFR	Binary Universal Format Representation
DLI	Downward Long wave Irradiance
ECMWF	European Centre for Medium-Range Weather Forecasts
ERS	European Remote-Sensing Satellite
EUMETCast	EUMETSAT's Digital Video Broadcast Data Distribution System
EUMETSAT	European Organisation for the Exploitation of Meteorological Satellites
GMF	Geophysical Model Function
HDF	Hierarchical Data Format
HH	Horizontal polarisation of sending and receiving radar antennas
HSCAT	Scatterometer on-board the Haiyang 2 series satellites (China)
KNMI	Royal Netherlands Meteorological Institute
Кр	Backscatter measurement noise estimate
MLE	Maximum Likelihood Estimator
MSS	Multiple Solution Scheme
NASA	National Aeronautics and Space Administration (USA)
NetCDF	Network Common Data Form
NOAA	National Oceanic and Atmospheric Administration (USA)
NSCAT	NASA Scatterometer
NSOAS	National Satellite Ocean Application Service (China)
NWP	Numerical Weather Prediction
OSCAT	Scatterometer on-board the Oceansat-2 and ScatSat-1 satellites (India)
OSI SAF	Ocean and Sea Ice SAF
OWDP	OSCAT Wind Data Processor
PenWP	Pencil beam Wind Processor
RMDCN	Regional Meteorological Data Communication Network
QC	Quality Control
QuikSCAT	US Quick Scatterometer mission carrying the SeaWinds scatterometer
SAF	Satellite Application Facility

SDP	SeaWinds Data Processor
SeaWinds	Scatterometer on-board QuikSCAT platform (USA)
SSI	Surface Solar Irradiance
SST	Sea Surface Temperature
u	West-to-east (zonal) wind component
V	South-to-north (meridional) wind component
VV	Vertical polarisation of sending and receiving radar antennas
WMO	World Meteorological Organisation
WVC	Wind Vector Cell

7. Appendix A: BUFR data descriptors

Number	Descriptor	Parameter	Unit
001	(01007)	Satellite Identifier	Code Table
002	(01012)	Direction of Flight	Degree True
003	(02048)	Satellite Instrument Identifier	Code Table
004	(21119)	Wind Scatterometer GMF	Code Table
005	(25060)	Software Identification	Numeric
006	(02026)	Cross Track Resolution	m
007	(02027)	Along Track Resolution	m
008	(05040)	Orbit Number	Numeric
009	(04001)	Year	Year
010	(04002)	Month	Month
011	(04003)	Day	Day
012	(04004)	Hour	Hour
013	(04005)	Minute	Minute
014	(04006)	Second	Second
015	(05002)	Latitude (Coarse Accuracy)	Degree
016	(06002)	Longitude (Coarse Accuracy)	Degree
017	(08025)	Time Difference Qualifier	Code Table
018	(04001)	Time to Edge	Second
019	(05034)	Along Track Row Number	Numeric
020	(06034)	Cross Track Cell Number	Numeric
021	(21109)	Seawinds Wind Vector Cell Quality Flag	Flag Table
022	(11081)	Model Wind Direction At 10 M	Degree True
023	(11082)	Model Wind Speed At 10 M	m/s
024	(21101)	Number of Vector Ambiguities	Numeric
025	(21102)	Index of Selected Wind Vector	Numeric
026	(21103)	Total Number of Sigma0 Measurements	Numeric
027	(21120)	Seawinds Probability of Rain	Numeric
028	(21121)	Seawinds NOF Rain Index	Numeric
029	(13055)	Intensity Of Precipitation	kg/m**2/sec
030	(21122)	Attenuation Correction On Sigma-0 (from Tb)	dB
031	(11012)	Wind Speed At 10 M	m/s
032	(11052)	Formal Uncertainty In Wind Speed	m/s
033	(11011)	Wind Direction At 10 M	Degree True
034	(11053)	Formal Uncertainty In Wind Direction	Degree True
035	(21104)	Likelihood Computed for Wind Solution	Numeric
036	(11012)	Wind Speed At 10 M	m/s
037	(11052)	Formal Uncertainty In Wind Speed	m/s
038	(11011)	Wind Direction At 10 M	Degree True
039	(11053)	Formal Uncertainty In Wind Direction	Degree True
040	(21104)	Likelihood Computed for Wind Solution	Numeric
041	(11012)	Wind Speed At 10 M	m/s
042	(11052)	Formal Uncertainty In Wind Speed	m/s
043	(11011)	Wind Direction At 10 M	Degree True
044	(11053)	Formal Uncertainty In Wind Direction	Degree True
045	(21104)	Likelihood Computed for Wind Solution	Numeric
046	(11012)	Wind Speed At 10 M	m/s
047	(11052)	Formal Uncertainty In Wind Speed	m/s
	(11011)	Wind Direction At 10 M	Degree True

Number	Descriptor	Parameter	Unit
049	(11053)	Formal Uncertainty In Wind Direction	Degree True
050	(21104)	Likelihood Computed for Wind Solution	Numeric
051	(02104)	Antenna Polarisation	Code Table
052	(08022)	Total Number w.r.t. accumulation or average	Numeric
053	(12063)	Brightness Temperature	K
054	(12065)	Standard Deviation Brightness Temperature	K
055	(02104)	Antenna Polarisation	Code Table
056	(08022)	Total Number w.r.t. accumulation or average	Numeric
057	(12063)	Brightness Temperature	K
058	(12065)	Standard Deviation Brightness Temperature	K
059	(21110)	Number of Inner-Beam Sigma0 (fwd of sat.)	Numeric
060	(05002)	Latitude (Coarse Accuracy)	Degree
061	(06002)	Longitude (Coarse Accuracy)	Degree
062	(21118)	Attenuation Correction On Sigma-0	dB
063	(02112)	Radar Look (Azimuth) Angle	Degree
064	(02111)	Radar Incidence Angle	Degree
065	(02104)	Antenna Polarisation	Code Table
066	(21105)	Normalized Radar Cross Section	dB
067	(21106)	Kp Variance Coefficient (Alpha)	Numeric
068	(21107)	Kp Variance Coefficient (Beta)	Numeric
069	(21114)	Kp Variance Coefficient (Gamma)	dB
070	(21115)	Seawinds Sigma-0 Quality Flag	Flag Table
071	(21116)	Seawinds Sigma-0 Mode Flag	Flag Table
072	(08018)	Seawinds Land/Ice Surface Flag	Flag Table
073	(21117)	Sigma-0 Variance Quality Control	Numeric
074	(21111)	Number of Outer-Beam Sigma0 (fwd of sat.)	Numeric
075	(05002)	Latitude (Coarse Accuracy)	Degree
076	(06002)	Longitude (Coarse Accuracy)	Degree
077	(21118)	Attenuation Correction On Sigma-0	dB
078	(02112)	Radar Look (Azimuth) Angle	Degree
079	(02111)	Radar Incidence Angle	Degree
080	(02104)	Antenna Polarisation	Code Table
081	(21105)	Normalized Radar Cross Section	dB
082	(21106)	Kp Variance Coefficient (Alpha)	Numeric
083	(21107)	Kp Variance Coefficient (Beta)	Numeric
084	(21114)	Kp Variance Coefficient (Gamma)	dB
085	(21115)	Seawinds Sigma-0 Quality Flag	Flag Table
086	(21116)	Seawinds Sigma-0 Mode Flag	Flag Table
087	(08018)	Seawinds Land/Ice Surface Flag	Flag Table
088	(21117)	Sigma-0 Variance Quality Control	Numeric
089	(21112)	Number of Inner-Beam Sigma0 (aft of sat.)	Numeric
090	(05002)	Latitude (Coarse Accuracy)	Degree
091	(06002)	Longitude (Coarse Accuracy)	Degree
092	(21118)	Attenuation Correction On Sigma-0	dB
093	(02112)	Radar Look (Azimuth) Angle	Degree
094	(02112)	Radar Incidence Angle	Degree
095	(02104)	Antenna Polarisation	Code Table
096	(21105)	Normalized Radar Cross Section	dB
097	(21106)	Kp Variance Coefficient (Alpha)	Numeric
	. ,	Kp Variance Coefficient (Beta)	Numeric
098	(21107)		

Number	Descriptor	Parameter	Unit
100	(21115)	Seawinds Sigma-0 Quality Flag	Flag Table
101	(21116)	Seawinds Sigma-0 Mode Flag	Flag Table
102	(08018)	Seawinds Land/Ice Surface Flag	Flag Table
103	(21117)	Sigma-0 Variance Quality Control	Numeric
104	(21113)	Number of Outer-Beam Sigma0 (aft of sat.)	Numeric
105	(05002)	Latitude (Coarse Accuracy)	Degree
106	(06002)	Longitude (Coarse Accuracy)	Degree
107	(21118)	Attenuation Correction On Sigma-0	dB
108	(02112)	Radar Look (Azimuth) Angle	Degree
109	(02111)	Radar Incidence Angle	Degree
110	(02104)	Antenna Polarisation	Code Table
111	(21105)	Normalized Radar Cross Section	dB
112	(21106)	Kp Variance Coefficient (Alpha)	Numeric
113	(21107)	Kp Variance Coefficient (Beta)	Numeric
114	(21114)	Kp Variance Coefficient (Gamma)	dB
115	(21115)	Seawinds Sigma-0 Quality Flag	Flag Table
116	(21116)	Seawinds Sigma-0 Mode Flag	Flag Table
117	(08018)	Seawinds Land/Ice Surface Flag	Flag Table
118	(21117)	Sigma-0 Variance Quality Control	Numeric

8. Appendix B: NetCDF data format

The wind products are also available in the NetCDF format, with the following characteristics:

- The data format meets the NetCDF Climate and Forecast Metadata Convention version 1.6 (<u>http://cf-pcmdi.llnl.gov/</u>).
- The data contain, contrary to the BUFR data, only level 2 wind and sea ice information, no sigma0 information. The aim was to create a compact and easy to handle product for oceanographic and climatological users.
- The data contain only the selected wind solutions, no ambiguity information.
- The wind directions are in oceanographic rather than meteorological convention (see section 4.1)
- The format is identical for HSCAT, ASCAT and any other scatterometer data.
- The data has file sizes somewhat smaller than those of the corresponding BUFR data (e.g., one half orbit file of 25 km wind data is 11 MB in BUFR and 4 MB in NetCDF). When compressed with gzip, the size of one file in NetCDF reduces to 1.2 MB.

The file name convention for the gzipped NetCDF product is

hscat_YYYYMMDD_HHMMSS_SATELLITE_ORBIT_T_SMPL_VERS_CONT_l2.nc.gz where the meaning of the fields is identical to those in the BUFR file names (see section 4.2). The VERS part of the file name denotes the PenWP software version. A file name example is:

hscat_20210310_023001_hy_2b__11887_o_250_2204_ovw_l2.nc.gz.

Below are some meta data contained in the NetCDF data files:

```
dimensions:
       NUMROWS = 1773;
       NUMCELLS = 75;
variables:
       int time (NUMROWS, NUMCELLS) ;
               time:long name = "time" ;
               time:units = "seconds since 1990-01-01 00:00:00" ;
        int lat(NUMROWS, NUMCELLS) ;
                lat:long name = "latitude" ;
                lat:units = "degrees_north" ;
        int lon(NUMROWS, NUMCELLS) ;
               lon:long name = "longitude" ;
               lon:units = "degrees_east" ;
        short wvc index(NUMROWS, NUMCELLS) ;
               wvc index:long name = "cross track wind vector cell number" ;
               wvc_index:units = "1" ;
        short model speed(NUMROWS, NUMCELLS) ;
               model speed:long name = "model wind speed at 10 m";
               model speed:units = "m s-1" ;
        short model dir (NUMROWS, NUMCELLS) ;
               model_dir:long_name = "model wind direction at 10 m" ;
               model_dir:units = "degree" ;
        short ice prob(NUMROWS, NUMCELLS) ;
               ice prob:long name = "ice probability" ;
```



```
ice prob:units = "1" ;
        short ice_age(NUMROWS, NUMCELLS) ;
                 ice age:long name = "ice age (a-parameter)" ;
                 ice age:units = "dB" ;
        int wvc_quality_flag(NUMROWS, NUMCELLS) ;
                 wvc_quality_flag:long_name = "wind vector cell quality" ;
                 wvc quality flag:flag masks = 64, 128, 256, 512, 1024, 2048, 4096, 8192,
16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304 ;
                 wvc quality flag:flag meanings = "distance to gmf too large
data are redundant no meteorological_background_used rain_detected rain_flag_not_usable
small_wind_less_than_or_equal_to_3 m_s large_wind_greater_than_30 m_s
wind_inversion_not_successful some_portion_of_wvc_is_over_ice
some_portion_of_wvc_is_over_land variational_quality_control_fails
knmi_quality_control_fails product_monitoring_event_flag product_monitoring_not_used
any_beam_noise_content_above_threshold poor_azimuth_diversity
not_enough_good_sigma0_for_wind_retrieval" ;
        short wind speed(NUMROWS, NUMCELLS) ;
                 wind_speed:long_name = "wind speed at 10 m" ;
                 wind speed:units = "m s-1";
        short wind dir(NUMROWS, NUMCELLS) ;
                 wind dir:long name = "wind direction at 10 m" ;
                 wind dir:units = "degree" ;
        short bs distance(NUMROWS, NUMCELLS) ;
                 bs_distance:long_name = "backscatter distance" ;
                 bs distance:units = "1" ;
// global attributes:
                 :title = "HY-2B HSCAT Level 2 25.0 km Ocean Surface Wind Vector Product" ;
                 :title short name = "HSCAT-L2-25km" ;
                 :Conventions = "CF-1.6" ;
                 :institution = "EUMETSAT/OSI SAF/KNMI" ;
                 :source = "HY-2B HSCAT" ;
                 :software_identification_level_1 = 2204 ;
                 :instrument_calibration_version = 0 ;
                 :software identification wind = 2204 ;
                 :pixel_size_on_horizontal = "25.0 km";
                 :service type = "N/A" ;
                 :processing_type = "O" ;
                 :contents = "ovw" ;
                 :granule name = "hscat 20210310 023001 hy 2b 11887 o 250 2204 ovw 12.nc";
                 :processing_level = "L2" ;
                 :orbit number = 11887 ;
                 :start date = "2021-03-10" ;
                 :start_time = "02:30:01" ;
                 :stop date = "2021-03-10";
                 :stop time = "04:24:00" ;
                 :equator crossing longitude = "" ;
                 :equator crossing date = "" ;
                 :equator crossing time = "" ;
                 :rev_orbit_period = "" ;
                 :orbit_inclination = "" ;
                 :history = "N/A" ;
                 :references = "HY-2 Wind Product User Manual, http://www.osi-saf.org/,
http://www.knmi.nl/scatterometer/" ;
                 :comment = "Orbit period and inclination are constant values. All wind
```


directions in oceanographic convention (0 deg. flowing North)";
 :creation_date = "2021-03-10";
 :creation_time = "06:22:15";

The interpretation of the wvc_quality_flag integer value is as follows. The flag_masks correspond to certain flag bits that may or may not be set. This means that e.g. the 'flag_mask' 64 corresponds to 'distance_to_gmf_too_large' and so on. The flag masks are powers of 2. The way to handle this is to take the integer value of the wvc_quality_flag and find out how it is composed of powers of 2. Suppose that one wants to test if the 'knmi_quality_control_fails' flag bit is set. This is the 12th item in the flag list, corresponding to an integer value of 131072 (=2^17) in the flag_masks table. You can test if this value is set using the function:

(integer flag value / 2^17) modulo 2

which gives 1 if the 'knmi_quality_control_fails' is set and 0 if the 'knmi_quality_control_fails' is not set. The other flag bits can be tested in the same way. See the table below for the flag bits present in the wvc_quality_flag. The last column in the table shows the integer value if only the given bit is set.

Description	Bit number	Integer value
Not used	6	
Not used	7	
Not used	8	
Rain flag algorithm detects rain	9	512
Not used	10	
Reported wind speed is less than or equal to 3 m/s	11	2048
Reported wind speed is greater than 30 m/s	12	4096
Wind inversion not successful for wind vector cell	13	8192
Some portion of wind vector cell is over ice	14	16,384
Some portion of wind vector cell is over land	15	32,768
Variational quality control data rejection	16	65,536
KNMI Quality Control (including rain) data rejection	17	131,072
Product monitoring flag	18	262,144
Product monitoring not used	19	524,288
Not used	20	
Poor azimuth diversity among sigma-0 for wind retrieval	21	2,097,152
Not enough good sigma-0 available for wind retrieval	22	4,194,304