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 1 Introduction 

1.1 Aims and scope 
This guidance document addresses how systematic differences between NWP models and 
scatterometer wind observations, further referred to as biases, may be estimated and 
corrected. These biases are relevant for NWP data assimilation. The purpose of data 
assimilation is to find a model state that gives the best match between the most recent 
model prediction and the observations that became available since the forecast was 
produced. This state is called the analysis.  

Modern data assimilation techniques as Kalman filtering, 3DVar, and 4DVar require good 
estimates for the random error characteristics of both NWP model and observations, since 
these error variances determine the relative weight of each of the information sources in 
the analysis. These techniques are based on BLUE, Best Linear Unbiased Estimates, and 
therefore do not deal with biases, either constant or variable. Therefore, wind biases can be 
detrimental for NWP impact, e.g., negative impacts may occur by decelerating or 
accelerating flows and thereby filling in or intensifying atmospheric disturbances or lows. 
Moreover, a NWP model tends to restore its dynamical biases and thus systematic forcing 
by wind observations in data assimilation tends to be ineffective. It is thus important to 
correct for biases with respect to the NWP model wind climate. Further note that bias 
correction schemes for satellite radiances are common in data assimilation to facilitate BLUE 
by providing consistent satellite and NWP model data; see Dee (2005) and references 
therein or Dee and Uppala (2008). In practice best forecast results are obtained when the 
observations are corrected to fit the model wind climate, even when the biases are caused 
by model imperfections: consistency appears to be generally more important than absolute 
calibration in NWP dynamics. 

Biases in scatterometer observations are studied in detail (e.g., Stoffelen, 1998b; Vogelzang 
et al., 2011; Trindade et al., 2015). Moored buoys are generally taken as calibration target to 
establish “surface truth”. This does not at all mean that biases of scatterometer winds 
against the various NWP models will be minimized in this way. In the next sections we 
discuss what scatterometer winds and NWP winds represent and how these different 
representations may lead to biases. We specifically address so-called pseudo biases due to 
differences in spatial representation of NWP model, scatterometer and buoy winds. 
Moreover, NWP and scatterometer biases may change with wind speed, direction, time, 
atmospheric convection and stratification, climate regime, ocean currents, etc..  

Several reasons may exist why users wish to perform further bias correction: 

• The SAF winds are biased with respect to the winds from a particular NWP model, which 
is used for the assimilation of the scatterometer winds; 



 

Wind Bias Correction 
Guide 

Doc: NWPSAF-KN-UD-007 
Version: 1.3  
Date: 14-9-2018 

 

5 

 

• The scatterometer winds are blended with other wind data sets for a particular user 
application or service, where calibration does not match. 

• The SAF product specifications for product quality are inadequate, for example, a user 
may wish to use a different spatial sampling, corresponding to a different accuracy and 
bias (wind biases can be resolution dependent); 

 
A closely related report from the EUMETSAT NWP SAF concerns mainly spatial aspects of 
high-resolution wind data assimilation (Document NWPSAF-KN-UD-008). 

1.2 About this document 
This document is written for all users of Numerical Weather Prediction Satellite Application 
Facility (NWP SAF) scatterometer wind processors or Ocean and Sea Ice (OSI) SAF wind 
products. It gives the state of the art concerning common NWP model and scatterometer 
wind error characteristics in terms of resolution, bias, and accuracy, and contains 
recommendations how to correct for biases. The authors hope that this will help the user 
community to exploit the potential of scatterometer wind data as much as possible. They 
much appreciate feedback. 

Within the NWP SAF software is developed for processing scatterometer data over the open 
ocean to ocean vector winds. This software is freely available upon registration, and is also 
used in the OSI SAF to produce near-real-time ocean vector wind products. 

It has been demonstrated that the SAF scatterometer winds are accurate and reliable. Yet, 
as every measured quantity, these products have their particular error characteristics. Long 
term monitoring is needed to reveal these characteristics, and this is part of the tasks of the 
NWP SAF and OSI SAF project teams. Correction for biases in scatterometer winds is 
considered to be the responsibility of the OSI SAF and performed according to requirements 
from the broad user community, extending beyond NWP users. For example, requirements 
are expressed within EUMETSAT user meetings or the International Ocean Vector Winds 
Science Team (IOVWST) for, inter alia, nowcasting, oceanographic or climate applications.  
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 2 Scatterometry 

2.1 What does a scatterometer wind represent? 
A scatterometer is a radar instrument that measures the radar cross section of a portion of 
the Earth’s surface (for space-borne scatterometers typically of size 25 km × 25 km) from a 
number of incidence and/or azimuth angles and/or polarizations. The normalized radar 
cross section, 𝜎𝜎0, is a geophysical surface property and a measure for the fraction of 
incident radar radiation scattered back under given azimuth and incidence angle. It is 
measured by a scatterometer antenna with known antenna gain pattern and distance 
between radar and scattering surface. 

There are two ways of modeling 𝜎𝜎0 as a function of the other parameters: empirical and 
fundamental. In the fundamental approach wave generation by wind and radar backscatter 
from the ocean surface are modeled to yield 𝜎𝜎0. The empirical approach assumes some 
form of 𝜎𝜎0 as a function of the other parameters with a number of coefficients that are 
fitted to the observations. The outcome of the two approaches is the same: a prescription of 
how to calculate 𝜎𝜎0 as a function of wind speed and direction, measurement geometry, 
radar properties, etc. This function is called the Geophysical Model Function (GMF). The 
empirical approach has two main advantages over the more fundamental approaches (given 
the present state of the fundamental algorithms): the radar cross section is calculated faster 
and it is calculated more accurate. This makes the empirically-derived GMFs best suited for 
application in scatterometer wind retrieval (Stoffelen et al., 2017). 

The radar cross section Geophysical Model Function is defined as 

 𝜎𝜎0 = 𝐺𝐺𝐺𝐺𝐺𝐺(𝑈𝑈10𝑆𝑆,𝜙𝜙,𝜃𝜃,𝑝𝑝, 𝜆𝜆)  ,                   (1) 

with 𝑈𝑈10𝑆𝑆 the stress-equivalent wind speed (de Kloe et al., 2017), 𝜙𝜙 the wind direction w.r.t. 
beam pointing azimuth 𝜑𝜑, 𝜃𝜃 the beam incidence angle, p the radar beam polarization and 𝜆𝜆 
the microwave wavelength. An example is shown in figure 1. 

The radar cross section is a property of the surface itself. It is a measure of the surface 
roughness, 𝑧𝑧0, and related to the wind stress vector, 𝛕𝛕. This is in turn related to the friction 
wind velocity, 𝑢𝑢∗ or 𝐮𝐮∗ in vector notation. The surface wind at 10 m anemometer height, 
𝑈𝑈10, depends on 𝑢𝑢∗ and the temperature difference between the ocean and the overlying 
air. To avoid the latter dependency of scatterometer winds, reference winds from buoys and 
NWP models that are used for validation are processed at equivalent neutral stability, i.e., 
using equal temperature of air and sea (e.g., Hersbach, 2010a). Moreover, the reference 
𝑈𝑈10𝑆𝑆 winds take into account the air mass density effects that is relevant in the momentum 
transfer from air to water. In the following equations and following Portabella and Stoffelen 
(2009), also ocean currents 𝑈𝑈𝐶𝐶  are accounted for, as a scatterometer measures the wind 
relevative to the moving water surface 
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 𝑈𝑈10 − 𝑈𝑈𝐶𝐶 = 𝑢𝑢∗
𝜅𝜅
�ln �10

𝑧𝑧0
� − 𝜓𝜓 �10

𝐿𝐿
��  ,                  (2) 

 𝑧𝑧0 = 0.11 𝜈𝜈
𝑢𝑢∗

+ 𝛼𝛼 𝑢𝑢∗2

𝑔𝑔
  ,                     (3) 

 𝛕𝛕 = 𝜌𝜌𝑢𝑢∗𝐮𝐮∗  ,                        (4) 

 𝑈𝑈10𝑆𝑆 = �
𝜌𝜌
𝜌𝜌0
∙ 𝑢𝑢∗
𝜅𝜅
�ln �10

𝑧𝑧0
�� = �

𝜏𝜏
𝜌𝜌0
∙ 1
𝜅𝜅

ln �10
𝑧𝑧0
�   ,               (5) 

where 𝜅𝜅 = 0.41 is the von Karman constant, 𝑧𝑧0 is the roughness depth (also called roughness 
length), 𝜓𝜓 is the stability function (positive, negative, and null, for unstable, stable, and 
neutral conditions, respectively) and 𝐿𝐿 is the Monin-Obukhov length, which includes the 
effects of temperature and moisture fluctuations on buoyancy. 𝜌𝜌 is the air mass density with 
reference value 𝜌𝜌0 = 0.1225 kg m-3, 𝜈𝜈 is the kinematic viscosity of the air (1.5ˑ10-5 m2/s), 𝑔𝑔 is 
the gravitational acceleration at the Earth’s surface (9.8 m/s2), and 𝛼𝛼 the dimensionless 
Charnock parameter. Note that  

1) 𝑈𝑈10𝑆𝑆 only depends on the variables u*, 𝑧𝑧0 and ρ  , where the former two are 
dependent; these variables are computed from buoy or ECMWF winds; 

2) To go from the surface variables u*, 𝑧𝑧0 to U10S , stability is taken neutral in the lowest 
10m; 

3) The effect of air mass density to create ocean roughness is represented; 
4) 𝑈𝑈10𝑆𝑆 is defined with respect to the moving ocean surface as the ocean current 𝑈𝑈𝐶𝐶  is 

accounted for; note however, that accurate 𝑈𝑈𝐶𝐶  information is generally not available 
to correct ECMWF and buoy winds. 

The GMF for ASCAT is called CMOD. The current version is CMOD7 (Stoffelen et al., 2017). 
The radar cross section measurements typically have errors of 5%, while 𝜑𝜑, 𝜃𝜃, p, and 𝜆𝜆 are 
known very accurately. Given radar cross section data at multiple azimuths as measured by 
a scatterometer, the GMF is inverted to compute the local wind vector (or wind vector 
probability distribution; see Stoffelen and Portabella (2006). See also Portabella (2002), and 
Stoffelen (1998a), who describe the scientific background to the non-linear Bayesian wind 
retrieval and processing. 

The Ku-band GMF used at KNMI is inherited from the NSCAT instrument as it covers a wide 
incidence angle range. For Ku-band wavelengths, dissipation due to viscosity appears 
important, as RapidScat winds are biased with respect to collocated ASCAT-B winds and with 
respect to other wind references, such as in situ and NWP winds as a function of Sea Surface 
Temperature (SST) (Wang et al., 2016). Figure 1b shows the bias between RapidScat and 
ASCAT-B as a function of SST and wind speed. Wind speed is estimated by taking the mean 
of the ASCAT and RapidScat retrievals, as they are assumed to be equally accurate. A linear 
SST dependence emerges, but which depends on speed. The highest SST dependency occurs 
around a speed of 7 m/s, with lower dependency in the seas dominated by both low and 
high winds, which latter are dominated by wave breaking processes, while for low winds no 
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breaking occurs. This effect is under investigation and will be incorporated in the Ku wind 
retrievals in due time.  

 

 

Figure 1   RapidScat minus ASCAT wind speed bias in m/s as a function of SST and average wind speed;  
The dashed line bounds an area with sufficient sampling. (courtesy Z. Wang) 

 

A few remarks can be made concerning systematic effects related to scatterometer winds: 

• A scatterometer wind is measured w.r.t. the current and not w.r.t. an earth-fixed 
frame like buoy and NWP winds. In the Gulf Stream or the Kuroshio current, the 
discrepancy may be occasionally as large as 1 m/s in speed; 

• Roughness is caused by air-sea momentum exchange (stress) which depends on 
atmospheric mass 𝜌𝜌 , where Eq. (5) suggests such dependency (de Kloe et al., 2017); 

• Ocean mass density also plays a role in momentum exchange and varies by a per 
mille over the globe (e.g., 
http://en.wikipedia.org/wiki/Water_(molecule)#Density_of_water_ and_ice and 
NOAA World Ocean Atlas). This effect may be ignored. 

• The momentum exchange and small-scale ocean roughness at a given stress-
equivalent wind may depend on variations in sea state. Portabella and Stoffelen 
(2009) found no such dependency in a statistical assessment using the ECMWF WAM 

http://en.wikipedia.org/wiki/Water_(molecule)#Density_of_water
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model wave parameters. In extreme conditions, particularly near the coast, such 
effects are considered quite plausible however. On the other hand, it has been noted 
that some of these conditions are flagged by the scatterometer Quality Control (QC) 
at KNMI. 

The following effects are also known for their systematic behavior: 

1 Contamination by land and/or sea ice. Land and sea ice have a much larger radar 
cross section than the ocean surface, so land or sea ice contamination of a cell may 
lead to overestimation of the wind speed. Quality Control prevents such 
contamination (e.g., Belmonte et al., 2011). 

2 Presence and intensity of rain. Microwave radiation at Ku band is scattered into all 
directions by large rain drops in the atmosphere and therefore less ocean signal is 
received back than in the absence of rain. On the other hand, rain clouds cause 
backscattering, leading to overestimation of the wind. These two effects are 
substantial at Ku-band wavelengths (NSCAT, SeaWinds, OSCAT, RapidSCat, HY2A, 
ScatSat; Nie and Long, 2008) and intense rain provides an artificial wind speed of 
about 15 m/s. However, KNMI QC is quite effective in removing rain-contaminated 
winds by using MSS. Splashing rain on the ocean surface disturbs the radar cross 
section too, and could enhance it at low winds and perhaps reduce it at high winds. 
SAR images at C band indicate that these effects are rather spatially and temporally 
limited and negligible. As a result, C band wind measurements appear rather immune 
for rain contamination (ERS, ASCAT; Portabella et al., 2011; Lin et al., 2015; King et al., 
2017).  

Scatterometer processing starts with defining a regular grid of Wind Vector Cells (WVCs) on 
the Earth’s surface. The area of a WVC is larger than the area over which a single radar 
measurement is performed. Next, for each measurement geometry all individual radar 
measurements centered within a WVC are averaged. This results in a gridded σ 0 product in 
which each WVC contains exactly one σ 0 value per antenna view type. The averaging 
process reduces the speckle noise (measurement error) that is inherent in radar 
observations to typically 5%. At the lower winds sea surface roughness is the most variable 
and variations within a WVC cause additional geophysical variability and noise (Portabella 
and Stoffelen, 2006), but with rather limited effect on wind vector accuracy. 

 

 
Figure 2   Averaging the radar views (blue ellipses) in the WVC 

(black square).  
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Scatterometer wind processing starts with the gridded σ 0 product. The retrieved wind is 
therefore representative for the WVC. The WVC size determines the spatial resolution of the 
wind field, i.e., the size of the smallest wind feature visible. In practice the individual radar 
measurements do not cover the WVC exactly, nor are they spread homogeneously. Such 
effects are small and generally neglected. Multiple views in varying antenna geometry, 
notably in azimuth, are needed to resolve the wind vector. Due to the varying antenna 
orientation (see figure 2), the area sampled in a given WVC (Cumulative Spatial Response 
Function, CSRF) is not identical in the different views (Vogelzang and Stoffelen, 2017). Wind 
variability in the WVC area therefore causes noise in the wind retrieval, contributing to the 
geophysical noise. The combination of speckle and geophysical noise results in an estimated 
random wind vector RMS error of about 0.5 m/s (Portabella and Stoffelen, 2006). 

In order to further improve scatterometer wind biases, the following activities are ongoing: 

• Ocean calibration to improve consistency between scatterometer missions using 
cone metrics (Belmonte et al., 2017); 

• GMF improvements which are expected to benefit consistency of wind calibration 
across the swath and wind direction retrieval, particularly at winds below 4 m/s and 
improved in situ references above 20 m/s (EUMETSAT CHEFS project);  

• Study of geophysical effects, such as those concerned with air-sea momentum 
exchange, e.g., effects of waves or SST in generating ocean roughness; 

• QC development in variable wind and rain conditions, near the coast and near the ice 
edge; 

• Study of bias and wind variability effects due to spatial resolution, i.e., concerning 
wind PDF variation as a function of spatial resolution, effects of noise and the non-
linear wind retrieval function. 

The vector RMS error of scatterometer winds is estimated to be 1.0 m/s with biases 
generally below a few 10th of a m/s (Vogelzang et al., 2012), while spatial characteristics are 
those expected of atmospheric turbulence (e.g., King et al., 2014). Near moist convection, 
scatterometer winds appear quite reliable (Lin et al., 2015; King et al., 2017). 

2.2 What does a NWP surface model wind represent? 
A NWP model calculates meteorological quantities like wind on a regular grid. The equations 
use derivatives in space and time and only structures defined over several grid points are 
propagated well. In NWP grid distance is commonly referred to as model resolution, but 
spatially resolved structures over the open oceans are usually about 5-10 times larger 
(Skamarock, 2005). NWP model fields are propagated in discrete time steps and the model 
values are also representative for a time window of several time steps. This poses, of 
course, limits to the effective spatial and temporal resolution of the model fields. The size of 
these limits depends on the model characteristics, e.g., horizontal and vertical diffusion 
schemes and closure of the dynamical equations. In particular, the representation of 3D 
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turbulence on scales below 500 km (Nastrom and Gage, 1985) is generally poor in global 
NWP models (King et al., 2017). 

The NWP surface wind vector depends on how the surface layer processes are described in 
the model (cf. eq. 2-4) and on the representation of boundary layer processes and (moist) 
convection. Notable aspects are: 

1 Stress-equivalent surface winds (𝑈𝑈10𝑆𝑆) are computed from the NWP model friction 
velocity, which cannot be directly calibrated. In fact, the NWP model U10S is validated 
against buoys when stability information has been measured (e.g., Portabella and 
Stoffelen, 2009). NWP model stability tends to be too neutral (e.g., Hersbach, 2010a, 
Sandu et al., 2013). When the advected air is much warmer than the ocean, the situation 
is called stable. Under such conditions the wind profile over the ocean surface changes, 
leading to reduced surface wind and increased turning of the wind with height. The 
coupling of NWP surface winds with the free tropospheric winds is generally too large in 
stable conditions, leading to strength and direction biases (often > 10 degrees) in the 
surface stress vector (eq. 4). When the ocean is warmer than the overlying air the 
situation is called unstable. Underestimated instability has generally a smaller effect on 
the surface stress vector error than underestimated stability, but wind variability due to 
moist convection is often much underestimated (Lin et al., 2015; King et al., 2017). 
Several different NWP parameterizations for the wind profile exist with differences in 
momentum flux of up to 30%, but 10m wind biases of NWP models are generally only a 
few percent. To our knowledge, this statement includes NWP models with surface layer 
dependency on sea state (de Kloe et al., 2017), but further feedback from the user 
community would be welcome here. 

2 Drag parameterization is uncertain at high winds in situ wind references are mutually 
inconsistent; more work is needed to understand these in situ references (EUMETSAT 
CHEFS project). 

3 NWP models do generally not describe ocean current, although developments in this 
direction are under way in several centers. Moreover, skillful deterministic ocean 
current modeling is still in its infancy. Without current representation, the relative 
motion between free troposphere and surface will be in error, e.g., too fast when a local 
current exists in the direction of the atmospheric flow. In this case and in case of 
moderate or high winds the surface stress and the roughness depth will be exaggerated. 
Subsequently 𝑈𝑈10𝑆𝑆 will be estimated too high according to eq. (2). It is clear that biases 
result in NWP model 𝑈𝑈10𝑆𝑆 due to ocean current misrepresentation, but with amplitude 
depending on NWP model surface layer parameterization. 

2.3 Surface truth: buoy winds  
Both scatterometer and NWP model winds lack calibration. Conventional wind sensors are 
calibrated well for low, modal and high winds, however, and are generally used as 
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calibration standard for both scatterometer and NWP winds. In particular moored buoys are 
platforms dedicated to atmospheric and oceanographic measurement. 

A number of moored buoys measure the wind speed and direction, not disturbed by the 
platform and corrected for platform motion, together with a number of other parameters. If 
these include air and sea temperatures, it is possible to convert the measured wind vector 
to a stress-equivalent wind vector at 10 m anemometer height and compare to 
scatterometer winds. Buoy winds are commonly given as averages over 10 minutes. Note 
that buoys give time-averaged winds at a fixed location, while scatterometers give a 
spatially averaged wind at a certain time. A typical wind speed of 7 m/s averaged over 10 
minutes (600 s) corresponds to a track in one dimension of about 4 km length and a spatial 
scale of about 2 km. This is about one order of magnitude smaller than the typical 
scatterometer resolution. Thus, moored buoys and NWP and scatterometer winds each 
have a different spatial representation. It is important to note in this respect that spatial 
averaging of the wind field leads to a narrowing of the wind speed PDF and one would thus 
expect less extreme winds in a NWP data set than in a buoy wind data set. A narrower wind 
speed PDF corresponds to a lower mean wind of the wind PDF. Spatial averaging thus leads 
to a bias in the wind speed (reduction of the mean) w.r.t. the original data. It is clear that 
spatial representation has to be taken into account in calibration1. 

Moored buoy platforms do not reach 10 m height generally. Therefore, actual roughness 
depth and stress need to be estimated at the buoy measurement site and these be 
represented as stress-equivalent 10 m winds, 𝑈𝑈10𝑆𝑆, in order to represent the scatterometer 
data. Although roughness depth and stress vector PDFs do depend on the surface layer 
parameterization, 𝑈𝑈10𝑆𝑆 appears rather independent of the parameterization (Portabella and 
Stoffelen, 2009). 

The buoy wind measurements are w.r.t. an earth-fixed reference frame and thus in case of 
ocean current do not provide an appropriate reference to scatterometer winds, nor provide 
good input for air-sea fluxes which essentially depend on the relative motion of air and sea. 
For the main ocean currents biases up to 1 m/s may occur and may be corrected at some 
buoy locations (Kelly, 2001). 

Buoy wind sensors need calibration and maintenance. To address performance anomalies, 
monitoring and QC are in place at several centers (e.g., Bidlot et al., 2002). These schemes 
prevent instrumental errors to propagate into calibration parameters, but, on the other 
hand, somewhat affect geophysical and spatial sampling. 

Sampling biases may further occur when the data set used is not representative for the 
global wind climate. High-quality buoy measurements, for instance, are concentrated in the 

                                                      
1 One may increase temporal averaging to match spatial representation, i.e., using Taylor’s frozen turbulence 
hypothesis, but we note that a fixed temporal averaging implies variable spatial representation as a function of 
wind speed (3 hours averaging corresponds to a 20 km stretch at 2 m/s and a 200 km stretch at 20 m/s). For 
this reason we do not recommend this approach (but see Lin et al., 2014). 
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tropical oceans and along the coasts of North America and Europe (see Figure 3). Therefore, 
calibration results may not be fully representative of the global ocean conditions and be 
geographically biased towards tropical and coastal wind distributions (Stoffelen and 
Vogelzang, 2015).  

Figure 3   Irregular global distribution of moored buoys measuring high-quality winds. 
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 3 Biases 

3.1 How to detect biases? 
Biases show up when plotting the difference between scatterometer wind and model wind. 
A number of such plots is made available on the web. The NWP SAF web page at 
www.nwpsaf.eu provides links to monitoring pages of scatterometer differences with 
ECMWF, UKMO, and KNMI NWP models; so-called o-b and o-a differences with NWP 
background and analysis fields, respectively. These differences provide monitoring 
information on scatterometers and models. Also many error studies are published in the 
scientific literature and presented at IOVWST meetings for example 
(http://coaps.fsu.edu/scatterometry/meeting/past.php). 

Systematic differences in winds occur due to 

1) System calibration errors; for example, speed-dependent biases will show up as 
geographically- and time-dependent biases, since the wind speed PDF is 
geographically and time dependent due to weather and climate; 

2) Differences in spatial representation; local wind PDFs (buoys) have more extreme 
values than area-mean wind PDFs (NWP, scatterometer); 

3) Undetermined geophysical dependencies, e.g., currents, wind variability (e.g., 
downbursts in moist convection, turbulence), SST, sea state, etc.; 

4) So-called pseudo biases in wind speed due to non-linear transformation of random 
component errors (Stoffelen, 1998b); 

Only categories 1 and 3 are systematic errors that need to be corrected for BLUE wind 
component data assimilation, while categories 2 and 4 need to be acknowledged, but are 
not incompatible with BLUE wind components when treated appropriately (as 
representativeness error). 

Concerning 1), for statistical calibration of wind components, two methods are distinguished 
here: 

• Triple collocation. This is the most general, but also the most elaborate method. It 
yields (linear) calibration coefficients and error variances for three collocated data 
sets; PDF matching may be used subsequently for non-linear calibration; 

• o-b regression. Under some assumptions discussed below, also o-b regression may 
give useful results. 

Regression techniques are widely used to calibrate data sets. Regression will generally lead 
to useful results when the dynamic range of the variables is large as compared to the errors 
involved. For wind components, however, the dynamic range is typically 5 m/s, while 
random errors are typically 1 m/s, i.e., not negligible w.r.t. the dynamic range. In such cases, 
the regression result will critically depend on the random error assumptions, which 

http://www.nwpsaf.org/
http://coaps.fsu.edu/scatterometry/meeting/past.php
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assumptions often will be implicit rather than explicit. Moreover, the spatial representation 
error has to be well taken into account in the random error attribution. We will now 
illustrate the two methods. Note that data assimilation systems require BLUE wind 
components and usually specify an estimated random wind component error that is 
constant . We note that wind components generally behave like variables with constant 
random error due to the fact that a large proportion of the NWP and observation errors are 
due to wind variability effects. Wind variability effects on scales below 500 km are mainly 
governed by 3D turbulence, which in turn is well described as normal variations in wind 
component on the different scales (King et al., 2014). In fact, variations in wind speed and 
wind direction are more complex functions of 3D turbulence (see also Stoffelen, 1998). 

3.2 Triple collocation calibration 

Method 
The triple collocation method assumes that three systems (buoys, scatterometer, and model 
background in the case considered here) all give information on the true value 𝑡𝑡. The buoy is 
chosen as absolute reference relative to which the other systems are calibrated. Assuming 
that the buoy is free of bias (i.e., free of systematic errors) and that linear calibration 
suffices for the other two systems, the values w  measured by the different systems satisfy 

 𝑤𝑤𝑏𝑏𝑢𝑢𝑏𝑏𝑏𝑏 = 𝑡𝑡 + 𝛿𝛿𝑏𝑏𝑢𝑢𝑏𝑏𝑏𝑏 

 𝑤𝑤𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝛼𝛼𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡 + 𝛽𝛽𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝛿𝛿𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠                    (6) 

 𝑤𝑤𝑏𝑏𝑠𝑠𝑠𝑠𝑏𝑏 = 𝛼𝛼𝑏𝑏𝑠𝑠𝑠𝑠𝑏𝑏𝑡𝑡 + 𝛽𝛽𝑏𝑏𝑠𝑠𝑠𝑠𝑏𝑏 + 𝛿𝛿𝑏𝑏𝑠𝑠𝑠𝑠𝑏𝑏 

with 𝛼𝛼 and 𝛽𝛽 the calibration coefficients and 𝛿𝛿 the random measurement error. Since most 
errors will be due to speed scaling effects and wind components can be both positive and 
negative, the 𝛽𝛽 calibration coefficients are generally very small and may be ignored.  

Forming equations for all first and second statistical moments results in a set of equations 
that are further simplified by the following assumptions on the error characteristics: 

• Linear calibration by 𝛼𝛼 and 𝛽𝛽 is sufficient over the whole range of measurement 
values considered for scatterometer and NWP winds; 

• The reference measurement values are unbiased (see above); 
• The measurement errors have constant variance over the whole range of 

measurement values; this is generally corroborated by combined PDF’s of two wind 
data sets which show a rather constant width of the difference distribution as a 
function of wind component strength;  

• The measurement errors are uncorrelated with each other since they are realized 
independently; spatial representation errors may concern similar spatial scales and 
are treated separately; 

• The measurement errors are uncorrelated with the measurement values; in fact, any 
variation that is common (correlated) in the three systems is interpreted as a 
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dependent realization and caused by the underlying true wind field. The spatial scales 
represented in 𝑡𝑡 are thus determined by the deterministic scales in the NWP model, 
as this is generally the coarsest among the three systems. 

Since both the scatterometer and buoy have better effective resolution than the NWP 
system, they both may resolve true wind variance that is not resolved by the NWP winds. 
This wind variance will be part of both the spatial representation error of the scatterometer 
and buoy, and therefore be a correlated part of the observation error. Some subtleties are 
involved in handling the correlated part of the spatial representation error, see Stoffelen 
(1998). The following example uses representation errors calculated from wind spectra, see 
Vogelzang et al. (2011). 

Under these assumptions the error variances 〈𝛿𝛿2〉 and the calibration coefficients can be 
solved from equations (6), after which calibration may be performed as follows: 

 �
𝑤𝑤𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑠𝑠𝑠𝑠𝑐𝑐 = 𝛼𝛼𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−1 𝑤𝑤𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠   

 ⇒       𝑤𝑤𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑁𝑁𝑁𝑁𝑁𝑁 = 𝛼𝛼𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

𝛼𝛼𝑠𝑠𝑏𝑏𝑏𝑏𝑠𝑠
𝑤𝑤𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

 𝑤𝑤𝑏𝑏𝑠𝑠𝑠𝑠𝑏𝑏
𝑠𝑠𝑠𝑠𝑐𝑐 = 𝛼𝛼𝑏𝑏𝑠𝑠𝑠𝑠𝑏𝑏−1 𝑤𝑤𝑏𝑏𝑠𝑠𝑠𝑠𝑏𝑏   

  ,             (7) 

with superscript 𝑐𝑐𝑐𝑐𝑐𝑐 referring to calibration w.r.t. the buoys and superscript 𝑁𝑁𝑁𝑁𝑁𝑁 referring 
to calibration w.r.t. the NWP model (background) wind climate (following BLUE). 

Data sets 
• Buoy measurements not blacklisted by ECMWF (see figure 3); 
• ECMWF or ERA-interim forecast; 
• NRT scatterometer data (from OSI SAF, with ECMWF background): 

-  ASCAT-A-coastal,   September 1, 2010 – August 31, 2016 

-  ASCAT-A-12.5,    October 1, 2008 – April 28, 2015  

-  ASCAT-A-25,    April 1, 2007 – August 31, 2016 

-  ASCAT-B-coastal,   January 11, 2012 - August 31, 2016 

-  ASCAT-B-25,    January 11, 2012 - August 31, 2016 

-  OSCAT-50,     January 2, 2012 - February 20, 2014 

- .RapidSCAT-25,    November 7, 2014 - August 19, 2016 

-  RapidSCAT-50,    November 7, 2014 - August 19, 2016 

-  SeaWinds-KNMI-25,  November 1, 2007 – November 23, 2009 

-  SeaWinds-KNMI-100,  November 1, 2007 - November 23, 2009 

3 Reprocessed scatterometer data (with ERA-interim background) 

-  QuikSCAT-25    July 25, 1999 - November 21, 2009 
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-  QuikSCAT-50    July 25, 1999 - November 21, 2009 

The NRT SeaWinds-KNMI and reprocessed QuikSCAT products originate from the same 
instrument (QuikSCAT on board SeaWinds), but  different names are used here to 
distinguish the products. 

Results 
Let 𝒖𝒖𝒄𝒄𝒄𝒄𝒄𝒄 = 𝒄𝒄𝒖𝒖𝒖𝒖 + 𝒃𝒃𝒖𝒖 and 𝒗𝒗𝒄𝒄𝒄𝒄𝒄𝒄 = 𝒄𝒄𝒗𝒗𝒗𝒗 + 𝒃𝒃𝒗𝒗 with (𝒖𝒖,𝒗𝒗) the wind components from the OSI 
SAF wind product and �𝒖𝒖𝒄𝒄𝒄𝒄𝒄𝒄,𝒗𝒗𝒄𝒄𝒄𝒄𝒄𝒄� the linearly calibrated wind. The calibration constants 
𝒄𝒄 and 𝒃𝒃 are given in the table below for the various scatterometer wind products and for 
the collocated ECMWF forecast. 

 
Table 1   Triple collocation calibration coefficients with respect to buoys. b in m s-1. 

 Scatterometer ECMWF 

Dataset 𝒄𝒄𝒖𝒖 𝒃𝒃𝒖𝒖 𝒄𝒄𝒗𝒗 𝒃𝒃𝒗𝒗 𝒄𝒄𝒖𝒖 𝒃𝒃𝒖𝒖 𝒄𝒄𝒗𝒗 𝒃𝒃𝒗𝒗 

ASCAT-A-coastal 1.001 -0.07 1.010 0.03 1.025 -0.16 1.048 -0.056 

ASCAT-A-12.5 1.003 -0.11 1.010  0.04 1.024 -0.22 1.044 -0.053 

ASCAT-A-25 1.008 -0.10 1.008 0.00 1.017 -0.17 1.046 -0.070 

ASCAT-B-coastal 0.990 -0.03 1.005 0.01 1.027 -0.09 1.050 -0.070 

ASCAT-B-25 0.987 -0.04 1.000 -0.02 1.013 -0.07 1.049 -0.075 

OSCAT-50 1.000 -0.06 0.954 0.03 0.998 -0.14 1.030 -0.059 

RapidSCAT-25 0.989 -0.07 0.989 -0.04 1.019 -0.12 1.033 -0.090 

RapidSCAT-50 0.982 -0.07 0.974 -0.02 1.009 -0.13 1.020 -0.080 

SeaWinds-KNMI-25 1.048 -0.28 1.030 -0.01 1.015 -0.35 1.042 -0.069 

SeaWinds-KNMI-100 1.024 -0.25 1.017 0.00 1.006 -0.37 1.028 -0.063 

QuikSCAT-25 0.997 -0.19 0.984 -0.04 1.0035 -0.35 1.059 -0.057 

QuikSCAT-50 0.989 -0.23 0.974 -0.03 1.0006 -0.37 1.051 -0.048 

 

The error standard deviations are given in table 2 below. The numbers are valid for the 
calibrated wind components (using the calibration coefficients given above) at the scale of 
the ECMWF model (for the OSI SAF NRT products) or ERA-interim (for the reprocessed 
products). See Vogelzang et al. (2011) for a discussion of these values. Interestingly, the 
buoy data have the largest random wind error, while it constitutes the best calibrated and 
most direct winds. This is obviously due to the spatial representation error corresponding to 
the turbulent wind scales observed by the buoys, but not by the scatterometer and NWP 
model.  
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Further note that the better resolution ASCAT products ASCAT-A-coastal, ASCAT-A-12.5, and 
ASCAT-B-coastal show similar errors for the buoy and the ECMWF model, but larger error 
for the scatterometer than the ASCAT-A-25 and ASCAT-B-25 products. This is mainly due to 
the spatial representation error variance that increases from about 0.6 to 0.8 m2/s2 when 
going from the 25 to the 12.5-km product, due to the poorer resolution of the ECMWF 
model (see Vogelzang et al., 2011). Since the SeaWinds-KNMI-25 product is smoother than 
the ASCAT 25-km product, it has a lower spatial representation error, but that is 
compensated by a larger instrument error.  

 
Table 2   Error standard deviations of buoy and scatterometer observation errors and ECMWF model error at 

the scale of the ECMWF model in m s-1. 

 

Dataset 

Buoy ECMWF Scatterometer 

𝜀𝜀𝑢𝑢 𝜀𝜀𝑣𝑣 𝜀𝜀𝑢𝑢 𝜀𝜀𝑣𝑣 𝜀𝜀𝑢𝑢 𝜀𝜀𝑣𝑣 

ASCAT-A-coastal 1.36 1.51 1.18 1.08 1.01 1.29 

ASCAT-A-12.5 1.39 1.53 1.19 1.11 1.03 1.27 

ASCAT-A-25 1.34 1.46 1.18 1.16 0.85 1.05 

ASCAT-B-coastal 1.37 1.51 1.15 1.06 1.02 1.29 

ASCAT-B-25 1.32 1.44 1.10 1.11 0.83 1.03 

OSCAT-50 1.50 1.56 0.84 0.95 0.92 0.82 

RapidSCAT-25 1.38 1.45 1.01 0.97 0.92 0.97 

RapidSCAT-50 1.44 1.51 0.93 0.89 0.77 0.79 

SeaWinds-KNMI-25 1.46 1.51 1.11 1.18 0.90 0.78 

SeaWinds-KNMI-100 1.62 1.65 1.01 1.11 1.16 0.96 

QuikSCAT-25 1.49 1.48 1.17 1.27 0.83 0.70 

QuikSCAT-50 1.57 1.53 1.11 1.23 0.65 0.52 

 

Finally, note that the 25-km KNMI SeaWinds product has smaller error than the 100-km 
KNMI SeaWinds product, whereas for all other sensors the product at larger grid size has 
smaller error. This is due to the fact that the 25-km NRT product has been processed with 
the Multiple Solution Scheme (MSS) which takes the full wind PDF into account, whereas 
the 100-km product has been processed with the traditional scheme allowing at most four 
solutions [Vogelzang et al., 2009]. As result, the 25-km product has superior noise reduction 
characteristics. The reprocessed QuikSCAT products were both processed with MSS, and 
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QuikSCAT-25 has larger error than QuikSCAT-50. The latter product is spatially smoothed by 
MSS and seemingly spatially most representative of the ECMWF model2. 

3.3 Calibration by regression  

Method 
When applying standard regression methods on differences between observed 
(scatterometer) and model winds, one must be cautious as to how the errors are handled. 
Most regression methods implicitly assume that all errors are contained in the dependent 
variable while 𝑜𝑜 and 𝑏𝑏 errors are of similar size (see table 2), but this will cause errors as 
depicted in figure 4. 

In figure 4 the observations are perfectly calibrated (dashed black curve) and dispersed due 
to o and b errors (yellow data density colors). However, when a regression routine assumes 
all errors to be contained in 𝑜𝑜, then the average for low values of 𝑏𝑏 (red dot on the left-
hand-side blue line) will lie above the true calibration curve. Similarly, the calculated 
average ⟨𝑜𝑜|𝑏𝑏⟩ at high values of 𝑏𝑏 (red dot on right-hand-side blue line) will be too low. As a 
result, regression would yield something like the red dotted curve. In fact, a different 
regression is obtained when average 𝑏𝑏 values are computed for given 𝑜𝑜, ⟨𝑏𝑏|𝑜𝑜⟩, implicitly 
assuming perfect 𝑜𝑜 with no random error. 

 

 

 

 
Figure 4   Bivariate o and b distribution, showing 
(dashed) the mean o as a function of b. 

 

 

 

 

 

 

 

                                                      
2 See also the EUMETSAT NWP SAF high-resolution wind data assimilation (Document NWPSAF-KN-UD-008). 

o 

b 
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If, however, one can safely assume that 𝑜𝑜 and 𝑏𝑏 have the same random error distribution, 
which is a more reasonable assumption than assuming either one has no error, one may 
apply standard regression to 𝑜𝑜 − 𝑏𝑏 versus (𝑜𝑜 + 𝑏𝑏)/2, as shown in figure 5. Now standard 
regression will not introduce large spurious biases. One may also bin the data in 𝑜𝑜 + 𝑏𝑏 
values, as indicated by the blue lines and the yellow arrows, and obtain a non-linear 
calibration curve by calculating the average in each bin. In this way, calibration issues for 
low and/or high winds will become visible. 

More sophisticated regression methods take the error in both variables into account 
explicitly. The average values are now calculated along skewed lines with a slope 
determined by the ratio of the errors. 

 

 
Figure 5   Bivariate o and b 
distribution, depicting the mean o-
b as a function of (o + b)/2 (red 
dots).  

 

 

 

 

 

3.4 CDF matching 
Stoffelen (1998b) used a technique for obtaining higher order calibration that is now 
commonly referred to as CDF matching, where CDF is the Cumulative probability Density 
Function of a variable. It follows from eq. (6) that two linearly calibrated collocated data sets 
(so 𝑐𝑐 = 1 and 𝑏𝑏 = 0) have identical underlying PDF of 𝑡𝑡. If both error PDFs are the same, 
both distributions must have identical CDF too. Since the CDF is a monotonically rising 
function, the CDFs of the two data sets may be mapped onto each other. This implies a 
higher order calibration of the two data sets, similar to what is obtained by binning 𝑜𝑜 − 𝑏𝑏 
against 𝑜𝑜 + 𝑏𝑏. Stoffelen et al. (2017) employ such method to obtain a scatterometer 
Geophysical Model Function (GMF), called CMOD7, with consistent response at all incidence 
angles used by the ERS and ASCAT scatterometers. 

Thus CDF matching requires that both data sets have the same error variance. This will in 
general not be the case, but the error variances can be made equal if one assumes that the 
errors are Gaussian. Then, if 𝜀𝜀𝑏𝑏2 < 𝜀𝜀𝑏𝑏2, one can add a simulated Gaussian error with variance 
𝜀𝜀𝑏𝑏2 − 𝜀𝜀𝑏𝑏2 to the scatterometer winds. If 𝜀𝜀𝑏𝑏2 < 𝜀𝜀𝑏𝑏2, one can add a simulated Gaussian error with 
variance 𝜀𝜀𝑏𝑏2 − 𝜀𝜀𝑏𝑏2 to the background. In both cases the two data sets should have equal error 

o-b 

(o+b)/2 
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and true variance, so one can calculate the CDF’s and match them, irrespective of the 
underlying true value distribution. 

The values of 𝜀𝜀𝑏𝑏2 and 𝜀𝜀𝑏𝑏2 can be obtained from triple collocation. However, the triple 
collocation results are averages over all wind speeds and all WVC’s. Plotting 𝜀𝜀𝑏𝑏−𝑏𝑏2 = 𝜀𝜀𝑏𝑏2 + 𝜀𝜀𝑏𝑏2 
as a function of 𝑜𝑜 + 𝑏𝑏 will reveal variations of the total variance with average wind speed 
and /or WVC number. The error variances can now be made equal for each 𝑜𝑜 + 𝑏𝑏 bin and/or 
WVC number. This requires additional assumptions on 𝜀𝜀𝑏𝑏2 or 𝜀𝜀𝑏𝑏2. One expects particularly 𝜀𝜀𝑏𝑏  
to vary with WVC and 𝜀𝜀𝑏𝑏  to be rather independent of WVC. ERS and ASCAT errors are 
rather constant, but Ku-band scatterometer random errors depend on swath position and 
biases are known to depend on SST (Wang et al., 2016). 

3.5 Geographical differences  
 

 
Figure 6   Mean differences between ASCAT and collocated ECMWF speeds for Sept., Oct. and Nov. 2014. 
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NWP models deviate systematically from calibrated scatterometer winds due to: 

1) Representation of mesoscale phenomena, such as moist convection; 
2) Ocean currents; 
3) Parameterization errors. 

Figure 6 shows a typical difference map, in this particular case of ASCAT-ECMWF wind 
speeds. These difference patterns tend to be rather persistent and slowly evolve over the 
seasons. Typical o-b speed differences are 1.5 m/s in standard deviation and in amplitude 
quite comparable to some of the biases in the plot. This means that the assumption of BLUE 
data assimilation is violated. It indicates in practice that in some regions the innovations will 
be largely due to systematic model errors and the information on mesoscale weather 
contained in the scatterometer winds will essentially be lost in the process of data 
assimilation. Variational bias correction schemes, as already used for the assimilation of 
radiances, should be developed and employed in order to optimize the assimilation of 
scatterometer data. 

3.6 Extreme Winds 
Dedicated hurricane campaigns are conducted to calibrate extreme scatterometer winds 
(e.g., Esteban et al., 2006; van Zadelhoff et al., 2014).  

Vertical polarization measurements saturate at about 40 m/s. For ASCAT, which provides 
only vertical polarization measurements, it means that winds above 30 m/s should be 
treated with care. Pencil-beam Ku-band scatterometers measure in horizontal polarization 
too and therefore more reliably represent extreme winds in hurricanes in the absence of 
rain. 

  
Figure 7 ASCAT wind speed scatter plots of a) ASCAT versus drop sondes (from [37]), b) ASCAT versus 

moored buoy winds and c) ECMWF NWP winds versus ASCAT. Using drop sondes, moored buoy winds and 
NWP references above 15 m/s may result in discrepancies due to height and position reprepresentation 

differences. 

Moored buoy wind sensors are calibrated at dedicated sites and in wind tunnels. However, 
the buoy measurement platform and its interaction with large waves may cause failure to 
accurately determine extreme winds above 25 m/s (Edson et al., 2018). Unfortunately, the 

(b)                                                            (c) 



 

Wind Bias Correction 
Guide 

Doc: NWPSAF-KN-UD-007 
Version: 1.3  
Date: 14-9-2018 

 

23 

 

in situ references of moored buoys and dropsondes are mutually inconsistent at wind 
speeds of 20 m/s and higher (see Figure 7).  

NWP models need coupling to the ocean surface, which is generally arranged by specifying a 
drag coefficient. In fact, the inconsistency in 10-m wind reference is associated with an 
uncertainty in (NWP model) drag coefficient. The development of an in situ wind reference 
thus aids both satellite winds and NWP modelling in extremes. Note that different satellite 
wind products are now calibrated differently for extreme winds and are in fact inconsistent. 
This problem is under investigation in the international satellite winds community (e.g., in 
the EUMETSAT CHEFS project). 
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 4 Guidance 
The output of NWP SAF wind data processors (including the OSI SAF wind products) is 
calibrated against in situ wind data using triple collocation. Global NWP model wind 
climates may differ in quality and effective resolution and have rather large regionally-
dependent biases that depend on NWP model closure of the dynamical equations, 
parameterization errors and lack of 3D turbulence and moist convection. Regional models 
will also have such biases, but may also be affected by flow regime and boundary conditions 
(no 3D turbulence at inflow boundaries for example). The long-term biases in global NWP 
are locally of a size comparable to the o-b variance. Therefore, the BLUE paradigm is 
violated in scatterometer data assimilation. 

Inconsistencies in the represented spatial scales and in general calibration should be further 
determined to avoid detrimental impacts in data assimilation. Spatial analyses of collocated 
data sets are recommended to allow identical samples of NWP and scatterometer winds 
and therefore accurate calibration. Spatial characterization and comparison based on non-
collocated data sets leads to errors in interpretation, as the 3D turbulence spectrum on the 
mesoscales varies naturally by about one order of magnitude (Nastriom and Gage, 1985). 

Since biases against observations are encountered, we recommend the following measures 
for an optimal scatterometer data assimilation: 

• Develop and employ variational bias correction in order to profit optimally from the 
accurate dynamic information provided by scatterometers.  

• Recalibrate the scatterometer winds using the triple collocation and/or 𝑜𝑜 − 𝑏𝑏 
regression techniques described above. In case of 𝑜𝑜 − 𝑏𝑏 regression, it is advised to 
calibrate the observations w.r.t. to the model, even when the model is known to be 
incorrect, to ensure model consistency in BLUE data assimilation. Regression (or CDF 
matching) will be adequate when the scatterometer observation U10S error is similar 
to the NWP model U10S error. The latter is NWP-model dependent, where NWP 
models encapsulating smaller spatial scales will generally have larger wind errors, 
due to lack of initialization of the small scales 2.  

• Improve model physics in order to better describe the reality as it is measured 
and/or correct the NWP model climate. However, this is not straightforward, since it 
depends on many aspects and affects weather predictability (e.g., Sandu et al., 
2013). This is generally a longer term measure. 

• Filter the data. If the problems occur at certain wind speed ranges, in certain 
geographical areas, or in certain times of the year, one may consider rejecting those 
data that cause problems. In this respect, we recommend to follow the quality 
control flags as set in the SAF wind processors, AWDP and PenWP, which are set to 
flag the most variable wind conditions. 

• Discard the data. Since scatterometer winds are known to be accurate and reliable, 
this is not a recommended strategy. 
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Joint observation and NWP model wind distributions are known to be seasonally dependent 
and it is recommended to perform calibration tests with a data set representative of a full 
year. 

Monitoring of 𝑜𝑜 − 𝑏𝑏 and 𝑜𝑜 − 𝑐𝑐 differences is needed to be reassured of constant NWP 
model wind climates, For examples of monitoring diagnostics we refer to the web links at 
the end of this document. 

Geographical biases must be verified after calibration and need correction to ideally suit 
BLUE. Procedures for correction of persistent biases are being investigated by the OSI SAF 
team at KNMI: scat@knmi.nl. 
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Useful web sites 
1 NWP SAF monitoring pages: 

http://research.metoffice.gov.uk/research/interproj/nwpsaf/monitoring 

Under “Scatterometer reports” links are given to the web pages of ECMWF, Meteo France, 
and UKMO. 

2 OSI SAF monitoring pages at KNMI: 

www.knmi.nl/scatterometer 

Select a wind product on the right hand side of the screen and then “Monitoring 
information”, again on the right hand side of the screen. 

3 IOVWST meeting presentations: 

coaps.fsu.edu/scatterometry/meeting/  

Various presentations on calibration and applications. 

4 International Winds Working Group: 

groups.ssec.wisc.edu/groups/iwwg/activities/high-resolution-winds-1/nwp-data-assimilation , 

www.knmi.nl/scatterometer/training_material and 

www.knmi.nl/scatterometer/publications   

References on data assimilation, scatterometry and quality aspects 

 
5 Data assimilation workshop: 

www.nwpsaf.eu/deliverables/scatterometer/data_assimilation_workshop/  

 

 

http://research.metoffice.gov.uk/research/interproj/nwpsaf/monitoring
file://nas-win.knmi.nl/weer/Onderzoek/rwscat/SAFs/publications/Drafts/www.knmi.nl/scatterometer
file://nas-win.knmi.nl/weer/Onderzoek/rwscat/SAFs/NWPSAF/deliverables/drafts/coaps.fsu.edu/scatterometry/meeting/
file://nas-win.knmi.nl/weer/Onderzoek/rwscat/SAFs/NWPSAF/deliverables/drafts/groups.ssec.wisc.edu/groups/iwwg/activities/high-resolution-winds-1/nwp-data-assimilation
http://www.knmi.nl/scatterometer/training_material
http://www.knmi.nl/scatterometer/publications
file://nas-win.knmi.nl/weer/Onderzoek/rwscat/SAFs/NWPSAF/deliverables/drafts/www.nwpsaf.eu/deliverables/scatterometer/data_assimilation_workshop/
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